Batalin-Vilkovisky algebra structures on Hochschild cohomology

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deformation of Batalin-Vilkovisky Structures

A Batalin-Vilkovisky formalism is most general framework to construct consistent quantum field theories. Its mathematical structure is called a BatalinVilkovisky structure. First we explain rather mathematical setting of a BatalinVilkovisky formalism. Next, we consider deformation theory of a BatalinVilkovisky structure. Especially, we consider deformation of topological sigma models in any dim...

متن کامل

Graph Cohomology Classes in the Batalin-vilkovisky Formalism

We give a conceptual formulation of Kontsevich’s ‘dual construction’ producing graph cohomology classes from a differential graded Frobenius algebra with an odd scalar product. Our construction – whilst equivalent to the original one – is combinatorics-free and is based on the Batalin-Vilkovisky formalism, from which its gauge-independence is immediate.

متن کامل

Gerstenhaber and Batalin-Vilkovisky structures on Lagrangian intersecions

Let M and N be Lagrangian submanifolds of a complex symplectic manifold S. We construct a Gerstenhaber algebra structure on TorS ∗ (OM ,ON ) and a compatible Batalin-Vilkovisky module structure on ExtOS (OM ,ON ). This gives rise to a de Rham type cohomology theory for Lagrangian intersections.

متن کامل

Batalin—Vilkovisky Quantisation

2 Path Integrals 3 2.1 Gaussian Integrals and Beyond... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Gauge-fixing Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.1 Gauge-fixing: Faddeev—Popov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.2 Gauge-fixing: BRST . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

The Hochschild Cohomology of a Poincaré Algebra

In this note, we define the notion of a cactus set, and show that its geometric realization has a natural structure as an algebra over Voronov’s cactus operad, which is equivalent to the framed 2-dimensional little disks operad D2. Using this, we show that for a Poincaré algebra A, its Hochschild cohomology is an algebra over the (chain complexes of) D2.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin de la Société mathématique de France

سال: 2009

ISSN: 0037-9484,2102-622X

DOI: 10.24033/bsmf.2576